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ABSTRACT 
In this paper we describe the desi,gn and implementation 
of a static array-bound checker for a family of embedded 
programs: the flight control s o h a r e  of recent Mars mis- 
sions. These codes are large (up to 250 KLOC), pointer 
intensive, heavily multithreaded and written in an object- 
oriented style, which m k e s  their analysis very challenging. 
We designed a tool called C Global Surveyor ( C G S )  that  
can analyze the largest code in a couple of hours with a pre- 
cision of 80%. The scalability and precision of the analyzer 
are achieved by using an incremental framework in which 
a pointer analysis and a numerical analysis of array indices 
mutualiy refine each other. CGS has been designed so that  
it can distribute the analysis over several processors in a 
cluster of machines. To the best of our knowledge this is 
the first distributed hplementation of static analysis dge- 
rithms. Throughout the paper we will discuss the scalability 
setbacks that we encountered during the construction of the 
tool and their impact on the initial design decisions. 

Categories and Subject. Descriptors 
F.3.2 [Logics and Meanings of Programs]: Semantics 
of Programming Languages-Program iinalysis 

General Term 
Algorithms, Languages. Verification 

Kedmor& 
.4bstract interpretation, program verification, pointer anal- 
ysis, array-bound checking, difference-bound matrices 

1. INTRODUCTION 
It is well-known that runtime errors plague the develop- 

ment of large mission-critical software. In 1996, the euplo- 
sion of -4riane 501 shortly after launch was due to an over- 
flow in an arithmetic conversion. This failure cost over 5500 
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millions to the European space program. Classical verifi- 
cation techniques based on development process, code re- 
viewing and testing were unable to detect t.hat defect. This 
overflow could have been detected by employing static anal- 
ysis techniques which can automatically inspect the text of a 
program and check the safety of all operations. As a matter 
of fact? the failure of Ariane 501 gave birth to a commercial 
static analysis tool called PolySpace Ada Verii5er 1221. This 
tool can perform precise static analysis of large Ada pro- 
grams (over 1 MLOC) and find runtime errors. In previous 
articles 151, we have reported OUT experience with C Veri- 
fier (the C version of Ada Verifier) on real NASA software. 
Unfortunately, we found that C Verifier does not scale as 
well as its Ada counterpart. In short, we had to limit our 
analysis to  code pieces of 20 to 40 KLOC and we obtained 
20% of warnings after 8 to 12 hours of analysis. This level 
of performance was not enough to convince N-4SA software 
developers to adopt the technology. 

We analyzed the reasons for these limitations and we de- 
cided to address them by prototyping our own static analysis 
tool called C Global Surveyor (CGS). We believe that it is 
exTi-erneiy hard to  build a static analyzer t h a t  works well 
for any C programs. The precision of a static analysis tool 
is measured in terms of the percentage of operations in the 
program that can be decided as safe (or unsafe). Precision 
is the main metric for judging the quality of a static ana- 
lyzer. Therefore, designing a static analyzer for any type of 
C programs forces the tool iinplementer to make tradeoffs 
that sacrifice scalability. We extensively expeiieaced with 
PolySpace C VeiSer G I ~  a -v-z-ietj; of NASA pias-  a d  we 
observed that precision remained consistently around 80%. 
However, there was a huge discrepancy between execution 
times, from a couple of hours to days. Our driving philos- 
ophy is that designing a tool for specific coding style and 
software architecture allows us to make different tradeoffs 
that optimize execution time for the software family we tar- 
get. 

Cousot et al. [3] used a similar approach to build a static 
analyzer that is specialied for software developed by Airblis; 
it can analyze 75.000 lines of C code without producing any 
warnings. Our goal with CGS is not as ambitious. Whereas 
the software analyzed in [3] is safety-critical, single-threaded 
and uses a very restricted subset of C, we have to analyze 
programs that are multithreaded and use the full power of 
pointer arithmetic. Our main purpose is io  achieve a level 
of precision comparable to that of PolySpace C I-erifier with 
much lower execution times, since in our case this is the de- 



approximation of the heap H,J and we const.ruct a decreas- 
ing sequence Ho 2 HI 3 . . .  3 H, of abstract heaps wish 
respect to the refinement order. We can use the pointwise 
extension of the narrowing of intervals to define a narrow- 
ilig operation O-b-ei abstract heaps. We can then automate 
this process, using the narrowing to enforce stabilization. 
Automatic stabilization is not implemented in the current 
version of CGS, the user must explicitly give the number of 
refinement steps that shall be computed. 

To illustrate this mechanism, consider for example a pro- 
gram working on an array A of two pointers, a pointer vari- 
able P and two integer variables I and J: and made of three 
simple threads defined as follows: 

void tasklo { void task20 1 void task30 c 
AI01 = &I; P = A C O ] ;  A[1] = &J; 

3 > 3 

Imagine that we are provided with a conservative field-in- 
sensitive approximation HO of the memory graph as follows: 

(&A: [ - X ,  + X I ,  [8,8]) H (&I, [-E, +E], [4, 4]), 
(&A, [-'x),+x], [8,8]) ++ (&Jj [-X:+m]: [4:4]), 

(&P, [-X, + X I ;  [4:4]) + (83: [ -X:  + X I :  [4; 41) 

assuming pointers and integers occupy four bytes in mem- 
ory on the architecture considered. After one step of itera- 
tion, the elements at indices 0 and 1 of array A are entirely 
determined, however the value of P is computed from the 
points-to information contained in Ho. Therefore we obtain 
the following memory graph: 

(&A, [O, 01, [S: 81) +. (&I, [O: O i ?  j4: 41): 
(&A; j4: 41, 81) - (&J, 10: 01,[4, 41)) 
(Qt-P, [O: 01, [4> 41) H (&I, [-W, +.XI, [4: 41)) 
(&P> [O, 01, [4; 41) +-+ (&J, [-a, +E], [4,4]) 

Note that the offset in the memory block &P has been solved 
because the assignment P = A [ O ]  writes its lefthand side at 
the offset 0. After one more iteration step, the assignment 
to P in task 2 can be precisely solved, since the memory 
layout of A has been completely determined at the previous 
iteration step. We finally obtain: 

f (&A: [O! 01, [S,S]) y (&I: [O,O], [4! 41): 
(&A, [A, 4]? 18: 81) ++ (&T, [O, 01, [4,4]), 
(&?, [C, C], [2:4]) ii (&I, [C, 01: [4,4]) 

It now remains the problem of bootstrapping the itera- 
tive process, i.e. obtaining the first approximation Ho. We 
first used Steensgaazd's analysis [24] enhanced with Das' 
one-level flow edges optimization [13]. However the result- 
ing abstract heap was too coarse, and there were spurious 
points-to relations introduced at that stage that remained 
in all subsequent refinement steps. One source of impreci- 
sion was due to the way message queues are allocated. The 
unique malloc call that creates a queue is nested within 
several function calls. Since in our memory model alloca- 
tions can only be distinguished by the syntactic location of 
the corresponding malloc, all message queues were merged, 
resulting in an unrecoverable loss of precision. Adding an 
option to CGS allowing to inline the corresponding functions 
solved this problem. The idea is to treat isolated sources of 
imprecision manually in this way rather than complicating 
the pointer malysis in order t.o cover all special cases. The 

drawback is that this kind of instrumentation can only be 
done by a high-end user who perfectly knows the internals 
of the analysis and how to cope with this kind of situation 
(see also [3] for a discussion of this issue). 

A sdbstLYtia! amount of the remaining spurisus points-to 
relations was due to brutal unification operations in Steens- 
gaard's analysis caused by pointers stored in global vari- 
ables. The solution consisted of extending Das analysis in 
order to be able to handle n-level flow edges without sac- 
rificing efficiency. W-e believe that scalable versions of An- 
dersen's analysis [2] could have been considered as well for 
the bootstrap (181. We unfortunately did not have the time 
to implement an inclusion-based analysis and compare the 
results. 

This ends the presentation of the abstract interpretation 
framework implemented in CGS. We now have to present 
the details of the abstract semantic equations. 

3. ABSTRACT SEMANTICS 
The symbolic and numerical parts of an abstract memory 

reference are independent, which means that we can com- 
pute these two pieces of information separately. We just 
need to perform a reduction operation CT whenever there is 
a context change (function call) or an interaction with the 
abstract heap (memory read). The choice of performing a 
Cartesian approximation for the abstract memory references 
was mainly motivated by this simplifying assumption in the 
abstract semantics. 

W-e generate two separate sets of semantic equations for 
each function in the program, one for the symbolic part in 
the form of inclusion constraints between points-to sets: the 
second as a system of numerical constraints between offset 
and size variables. The resolution of these equations follows 
the call graph by propagating call contexts made of points-to 
sets and intervals. The symbolic and numerical systems as- 
sociated to a function f are solved separately for all possible 
call contexts of f (depending on whether context-sensitivity-~ 
is enabled for this function or not). Thc resolution of these 
two systems of equations is interleaved, interactions occur- 
ring whenever some information is retrieved from the en- 
vironment, i.e. In this case we have 
to combine the numerical and symbolic information in or- 
der to query the memory graph H used at this step of the 
resolution. 

by a memory read. 

3.1 Points-to Inclusion Constraints 
Given a function f of the program? we associate a metava- 

riable A, to each local variable p of f that may carry a 
pointer (either a pointer variable itself or a compound vari- 
able with pointer-valued fields). These metavariables repre- 
sent the first component of an abstract memory reference, 
i.e. a set of symbolic addresses. Following the model defined 
in [26] we associate an anchor metavariable Ai to each loca- 
tion l of a memory read operation or a function call that may 
return a pointer. The metavariable At represents the set of 
addresses returned by the read operation or the function call. 
We similarly assign a special anchor metavariable Axof to 
each formal parameter x of f that may carry a pointer. This 
anchor denotes the poinss-to set of the argument passed to 
the function and is used during interprocedural propagation. 
Following Andersen's model [2] we use inclusion constraints 
of the form A, 2 A, to relate the metavariables. 

The generation of inclusion constraints is quite straight- 



forward. For all assignments p = q: p = q + n (pointer 
arithmetic) or p = (T *)q [type cast), we generate a con- 
straint A, 2 A,. For ail memory read operation p = *q or 
function call p = f (. . .> at a location ! in the program 

operation read(-&, -4%) which is used during interprocedu- 
ral propagarion for querying the abstract memory graph. A 
memory write operation *p = q is not assigned an inclu- 
sion constraint, it is simply assigned a semantic operation 
write(A,, -&) which is used at the end of an analysis pass to 
generate a new abstract heap, as described in the previous 
section. Similarly a r e tu rn  p statement is recorded sepa- 
rately as return(.4,) and is used for the construction of the 
transformers in the backward propagation phase described 
in Sect. 3.3. We must also add the constraints corresponding 
to the implicit binding relations between formal and actual 
parameters as follows: -4, 2 Axafr for all formal parameter 
x of f. 

The resolution of these constraints differs from Ander- 
senk algorithm [2! since read operations retrieve data from 
the abstract memory graph H and require some information 
about the offset at which the memory block is read. Our d- 
gorithm consists of a local fixpoint iteration that computes 
a set of symbclic addresses for each metab-ariable of f and 
launches the resolution of numerical constraints on demand 
whenever a memory read is encountered. For efficiency the 
resolution algorithm implemented in CGS first computes the 
directed acyclic graph of strongly connected components of 
the dependexy g a p h  of the system of inc!,sion constraints. 
The iterations are then performed locally on each strongly 
connected component following a weak topological ordering 
of the metavariables 141. 

--^ ,vc generate a constraint A, 2 -Ai; ai;d =e record a semaiitic 

3.2 Numerical Constraints 
Classically, when building an abstract interpretation of 

numerical computations, the abstract seniaritic equations 
follow the program structure [I". A. loo? statement in the 
body of a function will appear as a recursive dependency in 
the equations. Solving the system precisely usually requires 
computing two fixpoint iterations, the first one with widen- 
ing the second with narrowing. These calculations should 
be performed on the whole program, i.e. hundreds of thou- 
sands lines of C: a t  each step of the heap refinement pro- 
cess described in the previous section. In practice, we mea- 
sured that at least five global iterations over the program are 
needed to achieve a good level of precision. It was unredi-  
tic to perform a full-strength fivpoint iteration at each step; 
it would severely impair the efficiency of the analyzer. We 
decided to first compute a summary of each function of the 
program by using a relational numerical lattice a s  described 

i l s  for the points-to inclusion constraints, given a function 
f of the program, we associate two numerical metavariables 
0, and S, to each local variable p of f that may carry a 
pointer. The metavariables 0, and S, represent respectively 
the offset and size ranges of the abstract memory reference 
carried by the variable. We also associate a metavariable 
I, to each integer valued local variable n. Recall that local 
variables that are address-taken are globalized and never oc- 
cur in an abstract environment. We also attach two anchor 
metavariables Oe and Se to each location E of a memory 
read/write operation or a function call that may return a 
pointer. The metamriables Oe and SC represent respectively 

in [ll]. 

the offset and size ranges of the absnact memoc reference 
returned by the operation at that point. 11-e similarly at- 
tach special anchors OxQf and SrGf  (resp. I,,af) to each 
point.er-valued (resp. integer-valued) formal parameter x of 
f .  . 

We could also attach anchor rnetavariables I t  to  each lo- 
cation E of a memory read operation or a function call rhat 
returns an integer. CGS actually has command-line options 
to generate such anchors. The representation of integer val- 
ues in the abstract heap is identical to that of pointers, i.e. 
it  consists of mapping a memory location (a: 0, S} to an in- 
terval [u,b]. Some extra care is required when reading an 
integer from the heap in order to ensure that the offset of 
the read operation is aligned with the offset of the integer 
in the memory block: otherwise this would result into re- 
turning a truncated value. Similarly we have to make sure 
that the sues match, for example if we try to read a byte 
from the location of an integer, otherwise the results would 
be inconsistent. We address these issues in a very simple 
way: whenever we encounter a read operation of an integer 
of size s from the address a at the offset 0' and there is 
a mapping (a: 0: S) H [a: b] in the abstract heap, we re- 
turn the interval [u, bj if and only if 0 and S are singletons 
and 0 = 0', S = [s: s]. We return [-x, +a] otherwise. 
Surprisingly enough, the experiments showed no noticeable 
gain in precision on the MPF family with this option of CGS 
enabled. 

Now we need to choose a relational abstract domain for 
representing re!atioships between the nuolerical metamri- 
ab le .  Consider for example the following function which is 
representative of the matrix computations performed in the 
programs of the MPF family: 

void equate (double *p. double *q, i n t  n) { 
int i; 

for (i = 0; i < n; i++) 
'phi = q k l ;  

1 

In the abstract syntax tree of this function the body of the 
loop is represented by the three following statements: 

a = p + i ;  
b = q + i ;  
c = *b; 
*a = c; 

The variables a: b and c are internal names generated by 
the front-end. If we assume that the size of a double is 8 
bytes, the exact loop invariant is given by 

Sa = Spaequate 

0 2 Oa - Opeequate 5 8 * Ikequate  - 8 
S b  = S+quate i 0 5 Ob - Oqoequate 5 8 * InQequate - 8 

where we have eliminated all metavariables associated to 
local integer variables of the function, since they are just 
used for storing the result of intermediate computations. It 
immediately appears in this simple example that we need 
general l inev inequalities in order to be precise. The only 
abstract domain that is expressive enough for representing 
this kind of invariants is the lattice of convex polyhedra [12]. 
Unfortunately, because of the complexity of the underlying 



algorithms this lattice cannot be used for representing rela- 
tionships between more than 20 variables in practice. The 
functions in the codes of the MPF family can be quite large 
and use many pointers simultaneously. We found that in 
some fLinCtiGilS more than 30 poiiiteis were active iii the 
body of a loop. Moreover: the abstract syntax tree rep- 
resentation provided by the front-end introduces numerous 
internal variables since all statements are broken down into 
a 3-address format. 

Some numerical relational lattices have been developed 
recently that showed good promises of scalability [20: 211. 
However they are not expressive enough for representing the 
kind of linear inequalities in which we are interested. They 
can only express linear inequalities between two variables 
and the coefficients of these variables may only be 1 or -1. 
Our solution consists of modifving the form of our numericd 
constraints by introducing additional variables so that the 
overall expressiveness of a system of numerical constraints 
is kept constant: whereas the class of numerical relations 
required to achieve this expressiveness is simpler. 

hlore precisely, it appears that the main source of com- 
plexity comes from the byte-based representation of offsets. 
An array access p[ i l  is transformed into an arithmetic ex- 
pression in which we multiply the index by the size of an 
array element expressed in bytes. We extend the represen- 
tation of a pointer p by attaching additional metavariables 
bl(p), . . . ,6k(p) and u ~ ( p ) ,  ...? uk(p) for a fixed k. A pair 
(&(p), u,(p)) represents an oifset expressed in a diEerent unit 
than the byte. &(p) is the relative oEset and ~ ~ ( p )  is the 
base. The actual offset in bytes denoted by this representa- 
tion is given by the following formula: 

I 

We call the representazion PV.1., = (OP, (&(p),  ul(p)), . . . , 
( 6 { . ( ~ ) ,  ~ L L ~ ( F ) ) )  a s l i d i ~ g  window. We call Op.the base ofl.cet. 
The associated sliding operation slide(Wk, 6, u)  is defined as 
follows: 

The initial values of the sliding window for metavariables 
associated to inputs of the function, i.e. the parameters and 
the return values of a memory read or a function call, are 
set to  0 except for the base offset and u k .  The base offset is 
the one associated to the metavariable and u k  is the size of 
the element pointed to by the variable as it appears in the 
type inferred by the C front-end. 

The sliding operation is used for handling a type cast op- 
eration p = (T*)q. When analyzing this operation we first 
retrieve the range of uk(q) from the current system of in- 
equalities. If it is a singleton and it is equal to the size t 
of T then Wp = W,, otherwise Wp = slide(W,,O,t). This 
way u k  always represents the size of the element currently 
pointed-to by the variable. Whenever a pointer arithmetic 
operation p = q + n is analyzed, the sliding window is 
equated to Wq except for 6 k ( p )  for which the constraint 
Sk(p) = 5k(q) + In is generated. Now if we analyze the 
function equate with sliding windows of size k = 2 and the 
abstract numerical domain of difference-bound matrices [20], 
we obtain the following system of constraints for the loop 

invariant: 

sa = S p ~ e o u a r e  

Oa = O p ~ e q u a t e  

s, = SqqOeqcate 

Ob = 0,c aequate 

&(a) = uI(a) = 0 
0 _< &(a) _< InjDequare - 1 
w ( a )  = 8 

6l(b) = ui(b) = 0 
0 _< &(b) 5 lo~eqnzti? - I 
u?(b) = 8 

i 
I 

We can express the exact loop invariant with a less powerful 
abstract lattice and more variables. 

We chose the domain of difference-bound matrices [20] 
(DBbIs for short) for expressing numerical constraints be- 
tween variables. In this domain a constraint may only have 
the form x - y 5 c where c is an integer. The fundamen- 
tal operation on a DBM is the normalization that refines 
constraints by repeated application of the following rule: 

y - z 5 c‘ 
2 - y s c  

x - z 5 c// 
+ z - z 5 min(c + c‘, c”)  I 

Our choice was motivated by the observation that DBMs 
have a sufficienc expressiveness for our purpose and by the 
existence of an efficient quadratic algorithm devised by John- 
son [6] for the normalization of sparse systems of constraints. 
We assumed indeed that the systems of constraints would 
be rather sparse, since it would be very unlikely to have all 
variables in a function related at the same time. Our first im- 
plementation used Floyd-Warshall’s algorithm [6] for com- 
puting the normalization operation. The execution times 
were catastrophic. A simple function independently manip- 
ulating 20 pointer variables within a loop took more than 
15 minutes to analyze. The execution time did not change 
at all when we tried Johnson’s algorithm. 

After a careful inspection of the results it appeared that 
the system of inequalities was always dense, i.e. all variables 
were related. Therefore the cubic worst c a e  execution time 
was always attained. The reason was to be found in the 
way simple range constraints of the form n 5 x 5 b are 
represented. A DBhI always contains a dummy zero variable 
2 which has the value 0. Range constraints are translated 
into constraints of the form a 5 z - 2 5 6. Therefore all 
variables introduced in a DBM during the analysis become 
implicitly related as soon as a range constraint is involved, in 
other terms always. Thus completely independent variables 
become related from the moment they receive a constant 
(during initialization for example). This was a surprising 
and disappointing result. 

Our response to this situation was to explicitly pack com- 
putationally dependent variables together, so that the ana- 
lyzer works on a collection of smaller DBMs. A similar sit- 
uation has been independently reported in [3]. In that work 
the authors pack variables in small groups using a syntac- 
tic criterion (all variables that appear within a same state- 
ment). In ou r  case, such a simple criterion does not work. 
Pointer variables and loop counters can become related in 
a nontrivial way via the sliding window representation. We 
could not even use a dependency analysis because the ap- 
plication of the s l ide  operation depends on the range of uk 
which can only be known during the fixpoint iteration. Any 
dependency analysis performed beforehand would relate all 
variables of the sliding windows which would still lead to a 
high workload. 

Our solution consisted of dynamically computing the de- 
pendency relation between metavariables during the execu- 



tion of the analysis. LVe s tan  with all metavariables being 
unrelated and we incrementally merge the DBMs whenever 
tn-o of their xx-iables become related by an operation of the 
program. We ako merge the associated zero variables. We 
should also take care of implicit dependencies, Le. the in- 
visible dependencies between variables which are modified 
nithin a loop. If we do not consider these relations m-e lose 
all relations between array indices and loop counters for ex- 
ample. Therefore we first perform a rapid analysis of every 
loop in order to check the variables that can be modified in 
the body and we explicitly relate them before analyzing the 
loop. We are then able to infer all invariants that can be 
expressed with our abstraction. The function that took 15 
minutes with the classic DBM domain could now be ana- 
lyzed in about 10 seconds. 

The domain of adaptive DBMs that we have constructed 
in that way is an order of magnitude of complexity beyond 
the original one. Fortunately it can be simply described 
as an instance of a wfibered domain r27, 281. Cofibered 
domains were initially introduced to construct complex dc- 
mains for pointer analysis. They enable the m ~ p u l a t i o n  
of dependent abstract domains, i.e. families of abstract dc- 
mains indexed by the elements of a lattice. The domain of 
adaptive DBXfs is exactly a cofibered domain: the indexing 
lattice is the set of all partitionings of the set of variables 
ordered by tiie refiiieiiient relation, a d  the abstract domain 
associated to one partitioning of the variables is the prod- 
uct of the family of DBM domains based upon each set in 

partition of correlated variables was five elements. It would 
actually be an interesting experiment to use convex polyhe- 
dra instead of DBMs in the cofibered domain, since five is a 
tractable dimension for polyhedra? and compare the gain in 
precision. 

e L  bile partitioning. We Eeas-aed that the average size of a 

3.3 Interprocedural Propagation 
.Function pointers are widely used in embedded programs 

for efficiency reasons. There are plenty of them in codes of 
the MPF family. We realized that a simple control-flow anal- 
ysis based on Steensgaard’s algorithm [24] was sufficient to 
solve exactly almost all computed calls. As a matter of fact, 
recent experimental evaluations showed that simple pointer 
analyses were sufficient to resolve computed calk in most 
applications [19]. We perform this simple control-flow anal- 
ysis at the bootstrap prior to launching the interprocedural 
propagation phases. Having all computed calls resolved at 
bootstrap makes the design of the interprocedural propaga- 
tion algorithms tremendously simpler. In order to achieve 
e5ciency we break down the interprocedural propagation 
into two phases: 

1. A backward propagation phase computes transformers 
relating the parameters of a function with its return 
value. These transformers are expressed using the do- 
main of adaptive DBMs. 

2. A forward propagation phase uses the transformers 
computed in the previous phase to propagate abstract 
memory references and ranges using the lattice of in- 
t ervals . 

The transformers computed during the backward propaga- 
tion phase are used during the forward propagation to  solve 
.= !kction call nithout hznring to  analyze +he hndy of the 

called function. The re turn  operations are iiseri at this 
moment to propagate the constraints between the return 
value and the arguments of the call. -4 coarse version of the 
transformers are computed during the bootstrap in order to 
enable the Srst foi$-ad piopagaiion phase. Usiiig a classi- 
cal resolution scheme would have implied iterating over in- 
terprocedural cycles induced by the h-c-wa>: dependencies 
between a caller and a callee (function parameters/return 
value), which is completely unrealistic for large programs. 

The interprocedural propagation phase of CGS can be 
conte-ut-sensitive. We implemented call-site sensitivity, i.e. 
the invariants of a function are duplicated depending on the 
syntactic call site. This level of context-sensitivity is suffi- 
cient for the MPF family, since it handles the common situ- 
ation where a pointer to  some part of a big structure (typi- 
cdly an array of double representing a vector or a matrix) is 
transmitted to a mathematical function. Context sensitivity 
is not applied uniformly, but only to functions which have 
a pointer in their si,pature, since this is the only situation 
where the analysis is able to distin-qish between different 
call contexts. Context-sensitivity is extremely important for 
precision. Arrays of double, which are the main data struc- 
tures manipulated by the ILPF family codes. are usually 
transmitted together with an integer parameter containing 
the size of the array like in the equate example above. Since 
the numericai caii contexts computed by CGS only are made 
of intervals, they cannot express a relation between the size 
of the array and the integer parameter. The only way to 
capture this informatior, is to enumerzte all call contexts. 
Hence, without context-sensitivity the tool would be unable 
to perform any precise array bound checking on this large 
family of functions. 

4. ARCHITECTURE OF CGS 
The algorithmic core of C Global Surveyor consists of 

20,000 lines of C code. The tool is architected around three 
main phases: 

The build. This phase computes the points-to con- 
straints and the numerical inequalities for each func- 
tion in the program. 

The boots t rap.  This phase performs a flon-insens- 
itive pointer anaiysis and a coarse context-independent 
resolution of the numeric& inequalities, in order to 
obtain a first approximation of all memory accesses. 
These results are used to construct the call graph and 
an initial approximation of the heap. 

The solve. This phase consists of performing a for- 
ward or backward interprocedural propagation of nu- 
merical invariants. The results obtained at  the end of 
this phase are used to compute a new abstract heap 
that refines the previous one. This phase should be re- 
peated until a satisfactory level of precision has been 
attained. 

There are two additional satellite phases: 

0 The initialization. This phase is performed at the 
very beginning and collects general information about 
the program, like the table of global variables, the table 
nf fnnct.inns: etc. 



T h e  array-bound check (abc). This phase can be 
execused at any time after the bootstrap and checks 
the safety of all memory accesses from the results of 
the analysis available at this moment. The precision 
computed at the end of this phase is the main criterion 
for deciding whether to continue refining the results or 
stop at  this point. 

A very important decision in the initial design of a static 
analyzer is the choice of the front-end. We chose the Edi- 
son Design Group’s C/C++ front-end [15], a commercial 
front-end which supports a large variety of C dialects. More- 
over, the Green Hills’ compiler [17], which is widely used at 
NASA especially for developing flight software, is based on 
this front-end. This is a relevant factor when considering the 
application of the tool to other types of programs developed 
inside NASA. 

CGS has been designed from the beginning with a dis- 
tributed model of computation in mind. Therefore, we tried 
to parallelize all phases for which this makes sense? i.e. the 
build and the refinement, the nature of the algorithms used 
in the bootstrap precluding any attempt of parallelization. 
We chose the Parallei Virtual Machine (PVM) for imple- 
menting the distribution layer [16]. A major problem con- 
sisted of storing the artifacts of the analysis and trarisrnitting 
them to the processes running on parallel. We decided to use 
a relational database for both the storage and the commu- 
nication between processes of the artifacts, the PVM com- 
munication mechanism being merely used for sending com- 
rnmds to processes. We chose the PostgreSQL [25] database 
to work with CGS. The architecture of CGS is illustrated in 
Fig. 1. Note that each phase launches a master PVM pro- 
cess that in turn iaunches slave processes. Slave processes 
operate on each C file of the program for the initialization. 
the build and the array-bound check, whereas they operate 
on functions in the solve phase. The bootstrap is the only 
sequential phase. 

It is riot surprising to say that the cost of communications 
is the major limiting factor in designing a distributed ap- 
plication. CGS follows the same communication pattern for 
each job: all needed artifacts are retrieved from the database 
at the beginning of the job, the results are stored in internal 
memory until the job completes, then the results are writ- 
ten into the database. Two important algorithmic issues 
in desip-ning the distribution of jobs in CGS we the gran- 
ularity (which jobs should be executed in parallel) and the 
scheduling (in which order jobs should be executed). 

The granularity of the build phase is the file: one PVM 
process is launched for generating the semantic equations 
of each source file. The scheduling of tasks in the build 
follows a metric calculated during the initialization phase 
which estimates the complexity of the fixpoint computation 
for each function of the program. Complex files are executed 
in priority in order to prevent the computation from being 
biocked by a big job that has been scheduled at the end 
of the worklist. The function-level granularity gave poor 
results because the analysis time of a single function is so 
short that the database becomes overwhelmed by numerous 
concurrent accesses. 

The gmnularity of the solve phase is the function: one 
PVM process is launched for computing the invariant of each 
function. The scheduling follows a weak topological order- 
ing [4] given by the call graph in each way (forward/back- 
ward): a function is added to the worklist whenever all its 

Phase MPF (140 h>LOC) 
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Figure 2: Average analysis times (in seconds) per 
phase for MPF 

11 Phase DS1 (280 KLOC) 
1 1 )  1 cpu 1 2 cpus 1 4 cpus 1 6 cpus I 8 cpus 1 
n init II 457 I 357 I 264 I 230 I 208 n 

bwd solve I] 1811 I 1062 I 885 I 803 I 688 
fwd solve 1 1  1666 I 1080 I 954 I 853 I 767 

I , 
abc 11 537 I 484 413 I 824 I 1022 

Figure 3: Average analysis times (in seconds) pe r  
phase for DS1 

predecesssrs have been acdyzed. We hzve &miled control on 
the granularity and scheduling of the solve phase because of 
it is entirely bound to the structure of the call graph. The 
choice of the next function to schedule from the worklist 
turned out to be critical. In our first experiments we used 
simple heuristics that all led at  some point to an almost se- 
quential execution. Therefore, we should find a scheduling 
strategy that tries to maximize the parallelism. We chose 
a heuristic that consists of picking up the nest function to 
schedule from the workiist that has the largest number of 
calls to functions which are not in the worklist yet. This 
heuristic is simple to compute and gives good results in 
terms of distribution. 

5.  EXPERIMENTAL RESULTS 
This section shows two types of performance measures for 

CGS. First, we study the improvement of analysis times (for 
each phase) in function of the number of available CPUs. 
Note that all CPUs are identical (2.2 MHz with 1 GB of 
memory). Second, we show how the precision evolves with 
each solve phase. We distinguish between forward and back- 
ward interprocedural propagation in the solve phases. All 
experiments are conducted using two NASA mission soft- 
ware systems, i.e., the flight software of the Mars Path 
Finder missions (about 140 KLOC) and the Deep Space One 
mission (about 280 KLOC). Both are written in C and follow 
the same architectural and programming principles. 

5.1 Analysis Time Nfeasures 
Figure 2 and 3 show the results of the evolution of the av- 

erage analysis times of each phase for hdPF and DS1 when 
the number of available processors varies. We distinguish 
between successive solve phases because the input data at 
each iteration are different. Fig 4 gives a synthetic view of 
these times on a graph plot. These number are averszes over 
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several measurements. We sometimes noticed a significant 
variation between trials which can be imputed to the net- 
work load at that moment: since we do not have a dedicated 
cluster of machines for running our elcperiments. Note that 
the ditferences between execution times for the bootstrap 
phase are not relevant since this phase is purely sequential. 
They have been reported for consktency. 

The main conclusion is that contrarily to our expectations, 
parallelizing the algorithms does not bring a substantial pay- 
off. Four CPLs seem to be the threshold beyond which 
the communication cost counterbalances the parallelization 
benefits. The execution times consistently decrease for all 
parallel phases except for the array-bound check. The expla- 
nation is that each slave process for the array-bound check- 
ing perform very simple computations over a laxge amount 
of data (the numerical invariants associated to all memory 
accesses in a C file), hence the execution time is dominated 
by the 1/0 with the database. This phase should definitely 
be made sequential like the bootstrap. 

5.2 Precision Measures 
First, we study the precision in terms of ABC checks. 

All runs have been performed with context-sensitivity en- 
abled. We count the number of ABC checks performed and 
compute the percentage of these checks that are not warn- 
ings (i.e. array-bound checks that could have been decided 
by CGS): which provides us with a measure of the preci- 
sion of the analysis. We display the results in Fig. 5 .  Note 
that we group the solve phases by pairs backward-forward, 
since a backKa:d interproceduial propagation which com- 
putes function transformers is of no use if there is no follow- 
ing forward propagation phase that uses the transformers to 
ma!yze function calls mnre precisely. Two passes seem t,o 

DS1 

11 total check I warnings 1 precision 1 
/I 1 I I  37044 I 13248 I 64% I I  

! 

1 
2 
3 

I - 4 -  I 

'72152 I 18875 I '74% 
79% 72152 1 15103 1 

72152 1 15103 i '79% i 

Figure 5: Evolut ion of the precision after successive 
pairs of backward-forward solve phases for MPF and 
DS1 

be the optimal configuration. 
We also study the precision in terms of the number of 

points-to relations in the abstract heap computed for the 
program. As described in Sect. 2: each points-to relation 
carries three numerical invariants representing the offsets 
from the pointer and into the pointee, a s  well as the size 
of the memory block being pointed to. In Fig. 6 we dis- 
play the evolution of the number of points-to relations after 
successive pairs of backward-forward solve phases for MPF. 
We also show the number of imprecise numerical invariants 
(i.e. intervals which have one of their bounds equal to %m) 
for the pointer/pointee/siae information respectively. The 
last column represents the number of alias relations with an 
imprecise numerical invaxiant for either the pointer, or the 
pointee, or the size of the pointed memory block. 

We not,ice that the niimher of points-to relations is con- 
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6. RELATED WORK 
There are two bodies of work that are directly related to 

our work. The first one is the commercia1 tool PolySpace C 

-- 
was useful and found quite a few bugs (mainly uninitial- 
ized variables, out-of-bound array accesses, and overflows). 
Unfortunately, it also produced a large amount of warnings 
which deters developers. 

The second body of work precisely addresses the prob- 
lem of generating too many warnings. In [3) the authors 
describe a static analyzer (also based on abstract interpre- 

stant. The major improvement concerns the numerical in- 
variants. -4lthough the points-to table may seem very small 
compared to the size of the code, the points-to relations 
recorded there are pervasively used throughout the code. 
During the development of the tool we noticed that improv- 
ing the precision of few critical entries in this table could 
resolve thniisands of checks at  once. 



tation) that can analyze 75,000 lines of C code in a couple 
of hours with a high level of precision (11 false alarms on 
the code used For their experiment). Like for C,GS, the au- 
thors specialized their algorithms for a family of software 
with the following characterktics: f f i a q  g h b d  aiid staxic 
variables. no recursive functions nor gotos, and simple data 
structures. Furthermore, the authors mentioned than the 
alias information is trivial in the code they analyze. 

There are many analyses that can now scale to large pro- 
g a m s  124; 2> 1: 13: E]? but none of those offer the level 
of precision that can meet our requirements. For example, 
none of those analyses can track offsets (in arrays or com- 
plex data structures) with sufficient precision. Moreover, all 
these analyses have been designed for sequential programs. 
More precise analyses, such as those used in shape analysis 
[23], exist but they fail to scale to luge  programs. In fact, it 
is e-xtremely difficult to design an analysis that scales with 
high precision for any C program. However, as we demon- 
strate here, high precision can be achieved on large programs 
that share the same basic structure. 

7. CONCLUSION 
We have shown in this paper that the array bound check- 

ing of large C programs can be performed with a high level 
of precision (around 80%) in nearly the same time as compi- 
lation. The key to achieve this result is the specialization of 
the analysis towards a particular family of software. Most 
importantly, this experience emphasizes the importance of 
specializing the algorithms (the domain of adaptive DBMs) 
and dismisses the use of general solutions (parallehation). 
This approach has a major drawback however: developing a 
specialized static analyzer is a huge effort that requires an 
important expertise, which limits the impact of these tech- 
niques in the software industry. 

CGS is currently being applied to other kinds of NASA 
software. It has been recently run with success on several 
pieces of software operating in the Internationd Space S t -  
tion. This is an interesting process that will give us informa- 
tion on hos- a specialized analyzer behaves on programs that 
do not belong to its primary scope. The first results show 
noticeable variations in the precision. However, the scala- 
bility of the tool remains remarkably intact and CGS is able 
to analyze small proqams of 20 KLOC in fen- minutes. 
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